ATtiny Bitsy Spider

Originally posted on

ATtiny Bitsy Spider

UPDATE: Added BOM corrections. (Sorry for floating.)

Ok. Here’s a finished board I’ve been working on for a bit.

In essence, it is a BLE node board. It combines an HM-10 board with an ATtiny 85. This board builds off:

  1. Bluetooth 4.0 (HM-10)
  2. ATtiny 85

The idea of the Bitsy Spider board is diminutive controller node. I wanted it to be cheap and versatile enough to use as a node, but I think the final price is around $11 each.

Here’s the ole GitHub:

The BOM:

  1. OSHPark Board: $1.68 each ($5.05 minimum).
  2. 1 x 20k Resistor – 0402: $.04
  3. 3 x 10k Resistor – 0402: $.04
  4. 2 x 1uF 0402 $.20
  5. 3 x BSS138: $.60
  6. 1 x ATtiny 85 – SOIC: $.80
  7. 1 x HM-10: $6.50
  8. 1 x 0603 LED $.11
  9. 1 x 3.3V LDO 300mA – SOT-23-5 - Voltage Regulator: $.58

Total (approximate): $10.55

There are lots of solder-jumpers on this board, given it is meant to be versatile.

Here is the programming pinout to use an Arduino as ISP

The board is intended to harness the serial connection of the HM-10. In this version I made it straight forward, you leave the jumpers between the RX/TX line of the HM-10 and the ATtiny unsoldered, program the ATtiny as many times as you like. To test your serial connection between the ATtiny and the HM-10 simply breadboard the PCB and put jumpers like so:

PB0 <—> TX

** PB1 <—> RX**

This will allow you to test your code, without having to solder and unsolder. Then, after your code is perfectish, solder the jumpers marked “PB1 & HM10 RX” and “PB0 & HM10 TX,” then embed the Bitsy Spider.

This is an option that’ll probably continue throughout different versions of the board. I ran the GND connection of the ATtiny through a N-Chan MOSFET, and tied the gate of the FET to the PIO1. The PIO1 pin of the HM-10’s function is for a Connection Status LED. But one of the options one can set on the HM-10 is for the PIO1 to stay low unless the HM-10 has a connection. This can be set on the HM-10 when it’s in AT mode by typing:

  1. Type: AT+PIO11
  2. Response: OK+PIO11

When done, the ATtiny 85 will only power-up if the HM-10 has a connection. Of course, the solder-jumper is meant to bypass this feature.

The last solder jumper controls the HM-10’s reset. If soldered, the ATtiny 85 can reset the HM-10 by sending PB4 high for ~100mS. I added this as I hope to create a star-network with the ATtiny Bitsy Spider.

Here’s a summary explanation; the HM-10 has a time out feature after it losses connection from one HM-10 that prevents it from connecting to another for approximately 10 seconds. So far, there is no option to bypass this “lost connection” time-out. But resetting the HM-10 (<150mS power-cycle) bypasses this time-out. I’ll update more on this setup when I’ve completely tested it. If there are questions, I’ve written a lot in the comments of my original HM-10 post. But also feel fre to contact me.

One last thing I should mention.

I expect one major mistake and two minors on the first run of every board I send off. This board is no exception. I forgot the decoupling capacitors on the voltage regulator and the HM-10. I’ve added them on the v.02 board. Of course, this shouldn’t be a major flaw, but with a capacitor on the voltage regulator it causes it to spit out 3.6v instead of 3.3v. Major problem. I saved this set of boards by soldering a 0402 1uF between the legs of the SOT-23-5 regulator. Not fancy, but saved $5.

OLED via I2C

Originally posted on

imagesI guess it’s been an I2C weekend. I found these organic light-emitting diode displays (OLED)images imagesat Itead studio for $5. images

imagesNifty little buggers.images

They might be small, but their extraordinary contrast and viewing angle more than make up for it. Plus, I mean, c’mon, they’re $5. I will say I was a little annoyed that they operate at 3.3v. And I’m sure this means I’ll be making a small little level converter board for them pretty soon. I estimate the converter board would be around $1.25, simagestill a good price.images

images imagesimagesSome perks of OLEDs:images

  1. imagesWider viewing angle (i.e., you don’t have to look straight down at it).images
  2. imagesNo back light, making them flatter and use less power (not a lot less).images
  3. imagesHigh refresh rate. The only time I saw a flicker is through my video camera. And I had delay(10); in my code :) images
  4. imagesThey are cheap(er?).images
  5. imagesThey’re the future :) images

The only downside that really jumped out at me was the libraries are about 9k flash uploaded. The 64x64 LMR Bot was around 1k.

imagesWhen I got them I was worried I wouldn’t be able to use them without digging into the datasheets. But come to find out, they were exactly the same unit as on Adafruit’s boards. Sorry, I love you Ada…but…can’t afford $19.50. Now, maybe if Becky Stern came with them. Erm. Anyway, with Ada’s excellent guides and software I had the LMR Bot moving around in about 10 minutes. So, I’ll end up buying something from Ada to monetarily say, “Thank you, love.”images

The connections go something like this:

  • imagesArduino Uno 3.3v <————> OLED VCCimages
  • imagesArduino Uno 3.3v <————> LV of Logic Converterimages
  • imagesArduino Uno 5v <————> HV of Logic Converterimages
  • imagesArduino Uno Gnd <——————> OLED GNDimages
  • imagesArduino Uno Gnd <——————> LV Logic Converter GNDimages
  • imagesArduino Uno Gnd <——————> HV Logic Converter GNDimages
  • imagesArduino Uno A5 (SCL) <——— Channel 1 Logic Converter ——–> OLED SCLimages
  • imagesArduino Uno A4 (SDA) <——— Channel 2 Logic Converter ——–> OLED SDAimages
  • imagesArduino Uno D4 (SCL) <——— Channel 3 Logic Converter ——–> OLED RESETimages

I know, I know; I’m working on a converter adapter to make tha all those wires go away.